

Lebanese American University Chartered in the State of New York www.lau.edu.lb

School of Engineering Department of Electrical & Computer Engineering www.lau.edu.lb/ece

Introduction to *Artificial Intelligence* and its Impact on *Sustainable Development*

Joe Tekli, Ph.D.

My Area of Expertise

• Web-based semi-structured data processing & applications

XML, RDF, & OWL are at the center stage of data engineering
 ⇒ Main building block toward Intelligent Web Data Processing

- 2 -

Let's try to look at the future...

- 3 -

Content

Introduction

- Definition of AI
- Fields of Study in AI
- Impact on Sustainable Development
- Wrapping up

- We are called *Homo Sapiens* = the Wise Man
 - Intelligence: distinctive characteristic of the human race
- What is Intelligence?
 - Question with different perspectives: philosophical, scientific and moral
 - Intelligence characterizes the way we:
 - Think
 - Behave
 - Perceive things
 - Manipulate objects
 - Predict events
 - Interact with our environment
 - Communicate with other intelligent entities
- Artificial Intelligence (AI): field of study bridging computer science and computer engineering, aiming to create intelligent entities

• There are different views of AI, aiming to simulate/create:

	Consistency with human performance	Consistency with ideal performance
Reasoning	Human Reasoning	Rational Reasoning
Behavior	Human Behavior	Rational Behavior

- In this context, we can redefine AI:
 - Creation of **rational (intelligent) agents capable** of:
 - Perceiving their environment
 - Making decisions
 - To maximize their chances of achieving the desired goal
 - Given time constraints and restrictions in processing resources
 - While resisting noise/uncertainty, making decisions based on:
 - Incomplete
 - Inaccurate
 - Partially incorrect data

Deep blue vs. Kasparov, 1997

PackBot (US Army)

ASIMO (Hoda)

STANLEY (VW)

DART (US Army)

Content

- Introduction
- Definition of AI
- Fields of Study in AI
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

1. Search Agents

• <u>Main Premise</u>: Solving a problem intelligently by searching for the best solution in a space of many possible solutions

• Problem definition:

- 1. Producing abstract mathematical representation of the environment
 - Called the state space: S, set of states an agent can find itself in
- 2. Identifying the set of actions an agent can undertake to change states
 - Called the transition model
- 3. Identifying the agent's goal, i.e., the state(s) the agent needs to reach
 - Representing the solution(s) to the problem being formulated
- 4. Identifying the agent's **utility function**, i.e., a cost function evaluating the quality of a given solution

The agent is supposed to reach the **optimal solution**, i.e., the most *cost effective solution*

1. Search Agents: Applications

A160T (US Army)

Intelligent navigation & transportation systems

1. Search Agents: Applications

Planning & Scheduling

63 states

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Applications of AI in Astronomy
- Wrapping up

Joe TEKLI, 2013

2. Knowledge Representation

- Many of the problems machines are expected to solve will require extensive knowledge about the world
- <u>Main Premise</u>: Assigning information well defined meaning, to be automatically understood and processed by machines

• <u>Basic constructs:</u>

- Controlled vocabulary (e.g., machine-readable dictionary)
 - A list of ordered words with explicit semantic meanings
- Thesaurus (e.g., lexicon)
 - A dictionary enriched with semantic relations
 - Is-A, Related-To, Attribute-Of, See-Also, etc.
- Ontology (e.g., knowledge base)
 - Thesaurus with an explicit formalization of relations
 - Using dedicated grammar rules

2. Knowledge Representation

- Knowledge base (e.g., ontology)
 - Modeled as a **Semantic Network**
 - Concepts connected via (hierarchical) relations

2. Knowledge Representation

• Knowledge processing: evaluating relatedness between concepts

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

3. Natural Language Processing

Speech Recognition:

- A traveler calling United Airlines can communicate and book tickets, using:
 - A system of automatic speech recognition and a dialogue management system
- SIRI: mobile application using voice commands to manipulate mobile phone

3. Natural Language Processing

- Machine Translation:
 - Hot research area, requiring combination of various NLP techniques including: semantic analysis, WSD, and DM,
 - **PanDoRa:** machine translation system for hand-held equipment (Carnegie Mellon)

• Information Retrieval

- Core NLP components in state-of-the-art search engines
- Information Extraction & Content Analysis
 - Central in DM applications: Part-of-Speech tagging & Text categorization
- Lexicography
 - Creating domain specific dictionaries

3. Natural Language Processing

- Useful in many application scenarios:
 - Serving disabled people
 - Special aids for the blind
 - > Telephony and related domains
 - Automated call management systems

> Military

- ➢ High-performance fighter aircrafts
- ➤ Helicopters
- Battle management

Medical field

- Digital doctors and digital clinics
- Home automation

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

4. Approximate Reasoning

- Main premise: The world is *imperfect*, *inaccurate*, and full of *uncertainty*
 - Need to add a **truth scale** between **true** and **false**
 - Pioneered in Fuzzy Logic (L. Zadeh)
- <u>Specifications</u>:
 - 1. Data: Boolean Logic: False (0) True (1) Fuzzy Logic: $0 \rightarrow 1$
 - 2. Reasoning: Boolean Logic:Hypothesis \Rightarrow ConclusionFuzzy Logic:Hypothesis \Rightarrow Conclusion with a degree of truth

YANG

- <u>Origins</u>: Eastern Reasoning originated with **Buddha** around 600 B.C.
 - Each and every entity contains a little of its inverse, \mathbf{A} and $\overline{\mathbf{A}}$
 - E.g., A person is partly good and partly bad (Yang Yin)

4. Approximate Reasoning

Glimpse on Mathematical Constructs:

4. Approximate Reasoning

Useful in many scenarios:

- Creating control systems based on the "human common sense"
 - Creating intelligent agents simulating human reasoning/behavior
- Used when it is difficult to utilize traditional mathematical methods
 - E.g., human reasoning is often **non-deterministic** or **stochastic**
- Creating reflex-based systems using condition-action rules

Some practical applications:

- Autofocus and auto-tuning in sensors (e.g., digital cameras)
- Braking and handling (gear change, acceleration) systems in automobiles
- Speech recognition in Natural Language Processing (NLP)
- **Robotic systems** simulating human (or animal) walk and/or behavior

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

5. Machine Learning

- Machine learning is the science of getting computers to act without being explicitly programmed
- In the couple of years decade, machine learning has given us:
 - Self-driving cars, practical speech recognition, effective web search, among other applications, as well as a vastly improved understanding of the human genome...

Solution Key to make progress towards human-level AI

- Machine learning techniques fall within two main categories:
 - Supervised learning
 - Unsupervised learning

5. Machine Learning

- 5.1. <u>Supervised Learning</u>:
 - Main premise: Identifying an output measure based on input data
 - By mapping inputs to desired output
 - Using sample input/output data provided by experts: training data
 - Training data provided in the form of examples (X₁, y₁), ..., (X_m, y_m)
 - where **X** is a vector of $\mathbf{x}_1, \dots, \mathbf{x}_k$ input values
 - And **y** is the output generate by $\frac{\text{unknown}}{\text{desired}}$ activation function **f**

Discover a function *h* that approximates the desired activation function *f*

- Approach known as **classification**

5. Machine Learning

5.1. <u>Supervised Learning</u>:

5. Machine Learning

L

- 5.1. Supervised Learning:
 - Different classification algorithms exist in the literature
 - E.g., Instance-based, Support Vector Machines, and Artificial Neural Networks

Inspired by biological brain: ideal learning/recognition system

5. Machine Learning

5.1. Supervised Learning:

- When the output of classifier is a numerical value (e.g., temperature degree)
 - The learning problem is called **regression analysis**

• We can approximate f with different hypotheses, e.g., h_{α} , h_{β} , and h_{γ} \Rightarrow We usually choose the simplest (following *Ockham's razor*)

Major category of techniques allowing **predictability**

5. Machine Learning

5.2. Unsupervised Learning:

- Main premise: Finding a hidden pattern/structure in unlabeled data
 - Absence of an expert/knowledge about expected outputs for inputs
 - ⇒ Lack of training data

⇒ Learning without external intervention

- Typical approach: clustering
 - Organizing/grouping related input data into similar categories
 - Based on the input data relatedness/similarity following certain features
 - \Rightarrow Without any expert knowledge or training data
 - Sample clustering approaches:
 - Hierarchical agglomerative/divisive, partitional, spectral,

5. Machine Learning

- Essential in many applications requiring:
 - Pattern learning
 - Pattern detection
 - Pattern recognition
 - Pattern discovery
- A pattern can be:
 - An audio signal
 - A still image
 - A moving image
 - A radio-wave
 - A sound-wave
 - A part of speech

Ratio wave patterns

20 14	20	20 111
. 477	40 VM	40 5
10 20 40 60	00 20 40 6	0 20 40 60
». 4	» e.Q	» 6.0
• SS	* 74	40 L)Ç
20 40 60	60 20 40 6	60 20 40 60
· 60	» C	» 💽
• XX	* 32	40
60	60	60

Hand writing patters

Star configuration patterns

Unsupervised learning

Supervised learning

Machine learning is useful as pre-processing

- Preparing for other AI techniques
 - Search, knowledge representation, NLP, Reasoning, etc.
 - E.g., deciphering alien alphabet

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

6. Social Intelligence

<u>Main premise</u>: Understanding human emotions and intentions, and reacting accordingly

- Reaction depends on the goal of the intelligent agent being developed
 - Conducted based on input from sentiment analysis

Terms highlighting similar emotions usually show

• Similar syntactic distributions in a corpus

Using reference knowledge bases describing affect sentiments

E.g., WordNet Affect and SentiWordNet

6. Social Intelligence

Activation-evaluation wheel.

Assigning sentiment scores to data

- Text, images, audio, graph, etc.
 - Matched with input data to identify closest sentiment scores

6. Social Intelligence

- Central in many application scenarios:
 - Enhancing social media apps
 - With human like suggestions
 - Customers reviews on products
 - Information and **tutoring tools**
 - Digital instructors
 - Elections and voting stat analysis
 - Analyzing population mood
 - Computational humor systems
 - Human-Computer interaction
 - Human like robotics

Content

- Introduction
- Definition of AI
- Fields of Study in AI
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

What is Sustainable Development?

"Development that meets the needs of the present, without compromising on the ability for future generations to meet their needs"

AI can impact the 5 dimensions of sustainability

1. Economic Dimension

- <u>**Trend</u>**: 40% of customer-facing employees will consult with AI for decision making and daily tasks</u>
 - It will mainly happen in developed countries
 - CERN initiative to create European AI hub
 - French and German funding for AI
- **<u>Upside</u>**: Cheaper services in developed countries
 - Creation of high-end jobs back in-house
- <u>Downside</u>: Limited outsourcing to developing countries
 Decreasing need for low-skilled workers

2. Technical Dimension

- **<u>Trend</u>**: Advances in ML and increase in computational power
 - Ushering in a whole bunch of practical applications
- **<u>Upside:</u>** Benevolent applications
 - Driverless cars, assistive agents (supporting elderly or disabled people), medical diagnosis through deep learning
- **Downside:** Warfare
 - Autonomous killer drones, swarm bots

3. Environmental Dimension

- **<u>Upside:</u>** Lots of potential
 - *Pattern recognition:* support waste and pollution management
 - Analyze state of animals and trees through imagery, *enhancing local biosphere*
 - Autonomous vehicles: eco-driving and faster routes, leading to *less pollution*
 - Regression analysis: predictive systems
 - Weather forecasting, environmental crises, likelihood of extreme events: *early warning*

3. Environmental Dimension

- **Downside:** Many dangers
 - *Planned obsolescence*: limited functional life of electronics, design for fashion
 - Competitive pressure
 - Lack of customer concern

• Use of natural resources: mining bots to extract rare earth materials like gold, silver, led, zinc, etc.

4. Individual Dimension

- <u>Upside:</u>
 - Can help reduce work hours
 - *Digital assistants, chat bots, analytical tools* can take over some of the simpler tasks
 - Medical and health informatics: from improved and *early diagnosis*, to *preventive care*, and *robotic surgery*

Elderly care: smart homes and robot nannies

4. Individual Dimension

- **Downside:** Work overload
 - Working more: fast pace due to fast pace of technology and need to keep up
 - Less sleep and less exercise, leading to health and psychological problems
 - Decreased human-human interaction: due to work, social media, and digital games
 - Change in human behavior: becoming more isolated
 - Can lead to functional decline
 - *Reduced privacy*: social media and corporate hunger for data
 - Required to train more sophisticated AI systems

5. Social Dimension

• <u>Upside:</u>

Strengthen communities: improve information and communication technologies

Development and maintenance of networks

Mail courier (1980s)

Instantaneous Reliable Global

- *E-Learning, E-shopping, E-business*: more efficient
 - Give you more time to socialize

5. Social Dimension

• <u>Upside:</u>

- *AI promoting social wellbeing*: creating social campaigns (cleanliness on the road, stopping shisha smoking, building properly, anti-corruption campaigns)
 - Could be as simple as reminder of family birthdays: long time you haven't seen family, etc.

Downside:

- Data privacy
- Data or service provide trustworthiness
- Increased reliance on AI: if AI becomes increasingly used for social interactions: what if it forgets to remind us of a birthday?
- What if AI results in injury or harm: whose to blame?
 - AI designer, data provider, or used interacting with the AI agent?

AI can affect the 5 dimensions of sustainability

Recommendations to move in the right direction

Economic dimension:

- Workers need to be properly and continuously trained to become highly-skilled
 - Early retirement and frequent change of jobs...

Technical dimension:

- Revising technical code of ethics (e.g., ACM)
 - What AI should and should not do, liability, responsibility, etc.

Environmental dimension

- Corporate strategies needs to change: encouraging upgradeables/add-ons to the existing systems and re-use/re-cycling of existing ones
- Increase consumer awareness: to reuse and follow functionality rather than fashion

Recommendations to move in the right direction

Individual dimension

- Adapting education: need skills in mathematics, information technology, and scientific methodology: necessary to adapt to different jobs and tackling different problems
- Education about dangers of technology and security risks, to avoid them

Social dimension:

- Aligning the values of all stakeholders, especially data producers and consumers
 - Citizens, civil society groups, news media, corporations, and governments
 - E.g., German government: *declaration on cooperation on AI*
- **Refining legal framework** to handle AI related cases

17th century Amsterdam Town Hall

"The unrestrained pursuit of profit poses serious threats to the soul of the nation"

The unrestrained pursuit of Data and AI poses serious threats to the soul of Humanity

joe.tekli@lau.edu.lb

1. Simulating Human Reasoning

- Creating a system that thinks like a human being
- This requires further study and understanding of the **inner-workings** of the human **mind**, which researchers are trying to achieve by:
 - Introspection: The subject examines her own method of analysis (we ask questions like: "How do I form ideas", "how do I create logical connections", etc.).
 - **Experimental Psychology**: Observing other subjects in action, their behavior, their reactions to different cognitive stimuli, etc.
 - Study of the human brain: through enhanced brain imaging and analysis techniques, allowing to identify and study neural activity, changes in synaptic performance, etc.

Overview

	_	
Tot	endu.	ction
11111	louu	CUOII

```
Definition of AI
```

Fields of AI

```
Apps in Astro
```

Wrapping up

٠

2. Simulating Rational Reasoning

- Creating a system that thinks correctly: ideal thought
- Aristotle (384-322 BC. BC) was the first to codify correct reasoning
 - He introduced *syllogism*: a logical reasoning method, defining the formal structure of an argument
 - Based on two premises, and leading to a conclusion
 - <u>Example</u>: All men are mortal, Aristotle is a man, therefore Aristotle is mortal

- Obstacles to rational thinking:
 - Difficulty in dealing with uncertain information
 - Theoretical problem solving is not always practical (time limits & computing resources)

Overview

Introduction

```
Definition of AI
```

Fields of AI

Apps in Astro

3. Simulating Human Behavior

- Creating a system that **behaves like a human being**
 - The **Turing** test, proposed by Alan Turing in 1950, designed to test the ability of a machine to mimic human conversation
 - A machine passes the Turing test if, after a number of questions, the human tester (asking questions) cannot know if the answers come from a human or a machine
 - To pass the test, a machine must be able to perform:
 - Natural language processing in order to communicate with the human partner
 - **Knowledge representation**, knowledge to effectively store and handle information
 - Automatic reasoning, in order to use the stored information to answer questions
 - **Machine learning**, to evolve and adapt its behavior according to the constraints at hand (e.g., adapting to the tester's questions).

Overview

Introduction

Definition of AI

Fields of AI

Apps in Astro

4. Simulating Rational Behavior

• Creating a system that **behaves correctly**

⇒ Creating **rational agents**:

- A rational agent is a computer system assumed to function autonomously, with the capacity of:
 - Perceiving its environment
 - Adapting to changes
 - Creating and pursuing its own goals

Persisting without (human) assistance, for a long time!

• Which brings us to **cybernetic systems**:

• Acting on their environment, considering changes in the environment in order to control/adapt their behaviors accordingly

Overview

Introduction

Definition of AI

Fields of AI

Apps in Astro

Content

- Introduction
- Definition of AI
- Fields of Study in AI
 - Search Agents
 - Knowledge Representation
 - Natural Language Processing
 - Approximate Reasoning
 - Machine Learning
 - Social Intelligence
 - Evolutionary Computation
- Impact on Sustainable Development
- Wrapping up

Joe TEKLI, 2013

7. Evolutionary Computation

• <u>Main premise</u>: The AI system should be able to create and pursue its own goals

- To **persist without** (human) **assistance**, for a long time
- To expand its knowledge beyond predefined constraints

Evolutionary computation

- Inspired by the Darwinian Theory of Evolution
 - Genetic algorithms
 - Mimicking genetic processes nature uses

<u>Overview</u>

Introduction

Definition of AI

Apps in Astro

7. Evolutionary Computation

Background in genetics:

- Every organism has a set of rules
- Rules are encoded in the genes
- Genes are connected together to form chromosomes
- Each gene specifies a certain trait
 - Hair Color, Eye Color, etc.
- Each gene can have different settings
 - Blue, Brown, etc.
- Organisms mate: **crossover of genes** to produce **offspring**
- Genes can mutate over time, result in new unexpected genes
- Only the genes producing the **fittest** organisms survive

<u>Overview</u>

Introduction

Definition of AI

Fields of AI

Apps in Astro

- 64 -

Natural selection (survival of fittest)

Diversification (mutation)

- 65 -

7. Evolutionary Computation

Same process mimicked in GA:

- An organism represents a solution to a problem
 - A **gene** represents a sequence of symbols
- Simulating crossover and mutation functions
- **Fitness** is evaluated using a performance function
 - To be maximized/minimized
- Multiple generations are created
 - Until reaching the fittest

Overview

Definition of AI

Fields of AI

Apps in Astro

7. Evolutionary Computation

- Applications scenarios
- Antenna design
 - Drug design
 - Electronic circuits design (e.g., Koza)
 - Turbine engine design (e.g., GE)
 - Auto design (e.g., GM/Red Cedar)
 - Network design
 - Control systems design
 - Satellite design
 - Stock/commodity analysis/trading
 - Factory floor scheduling (e.g., Volvo, Deere)
 - Mission analysis and planning (e.g., NASA, US military)

- 67 -

<u>Overview</u>

Introduction

Definition of AI

Fields of AI

Apps in Astro