

Lebanese American University Chartered in the State of New York www.lau.edu.lb

School of Engineering Department of Electrical & Computer Engineering www.lau.edu.lb/ece

UNITED NATIONS **ESCWA**

Artificial Intelligence Learning Human Emotions

through Intelligent Data Processing

Joe Tekli, Ph.D.

My Area of Expertise

• Web-based semi-structured data processing & applications

- XML, RDF, & OWL are at the center stage of data engineering
 - ⇒ Main building block toward Intelligent Web Data Processing

- 2 -

Joe M. Tekli

More than 43 scientific publications in top international conferences and journals Coordinated 3 research projects: CEDRE 2012-13, CNRS-L 2015-16, & LAU-CNRS-L, 2017-19 Vice President of ACM SIGAPP French Chapter, France, since 2018 ▲ ER'15 CSE'16 MEDES'13 WISE'07 SOFSEM'11 UM-Dearborn **UB-LE2I CNRS** ICWE'10 ACM MM'08 ▲ SITIS'13 UPPA - LIUPPA ▲ ACM ASSETS'13 ▲ SITIS'12 ADBIS14 ICWE'07 ▲ IEEE ICWS'11 Shizuoka Univ. ▲ IEEE ICCC'18 UAU UNIMI ▲ ACM MMAR'11 **CNR IRPPS** COMAD'06 ▲ SISAP'14 SITIS 17 SBBD'07 DEIT'11 USP ICM ▲ ER'09 Visual Data Accessibility for the Blind 2018 - Visiting Researcher Scholarship, J. William Fulbright Scholarship Program, USA ER'07 Semantic Indexing & Disambiguation Since 2013 - Assistant Professor - ECE Dept., Lebanese American University (LAU), Lebanon XML Collective Knowledge Since 2012 - Visiting Professor - LIUPPA Laboratory, University of Pau (UPPA), France XML Structure Validation 2010 - Postdoctoral Scholarship, Research Support Foundation of the State of Sao Paulo (FAPESP), Brazil **SOAP** Multicasting 2010 - Postdoctoral Fellowship, Japan Society for the Promotion of Science (JSPS), Japan GML Ranked Retrieval 2010 - Postdoctoral Research Grant, Fondazione Cariplo, Italy XML Grammar Matching 2009 - Highest Honors (Summa Cum Laude), PhD, LE2I Laboratory UMR-CNRS, Dijon, France **RSS** Merging 2007 - PhD Graduate Fellowship, Ministry of Education and Research, France XML Semantic Similarity 2006 - Honors (Distinction Very Good - Top of Class) - Research Masters, University of Bourgogne, (UB) Dijon, France XML Structure Similarity 2006 - Research Masters Scholarship, AUF - International French Universities Agency (AUF), Beirut, Lebanon MM Data Fragmentation 2005 - Honors (Distinction Very Good - Top of Class) - Masters of Engineering, Antonine University (UA), Lebanon

Data to Humans...

Affichage

ł	🧯 Mozilla	
-	Fichier	E

📲 🕼 http://www.reazyread.com/sacks.html

Aller à Marque-pages Outils Fenêtre Aide

- 🗆 🛛

Edition

The Man Who Mistook His Wife for a Hat : And Other Clinical Tales

In his most extraordinary book, "one of the great clinical writers of the 20th century" (<u>The New</u> <u>York Times</u>) recounts the case histories of patients lost in the bizarre, apparently inescapable world of neurological disorders. Oliver Sacks's The Man Who Mistook His Wife for a Hat tells the stories of individuals afflicted with fantastic perceptual and intellectual aberrations: patients who have lost their memories and with them the greater part of their pasts; who are no longer able to recognize people and common objects; who are stricken with violent tics and grimaces or who shout involuntary obscenities; whose limbs have become alien; who have been dismissed as retarded yet

are gifted with uncanny artistic or a	📕 Google - Mozilla	🛛
If inconceivably strange, these brilliant tales remain, in Dr.	Eichier Edition Affichage Allerà Marque-pages Outils Fenêtre Aide	
studies of life struggling against incredible adversity, and th	🚺 🍨 🔻 🍌 👻 🍕 🎆 🔳 http://www.google.com/	💌 📥 🕶 🔟
Our rating : *****	Google	<u>^</u>
Find other books in : Neurolog Psychology Search books by terms		
💑 🕮 🌮 🔝 🗠 Chargé	Google Search I'm Feeling Lucky	
	💥 🕮 🎸 🖾 🚾	-

- 4 -

Data to Machines...

🧱 Mozilla				- • 🛛
Eichier Edition Affichage	Aller à <u>M</u> arque-pages <u>O</u> utils Fe <u>n</u> être A	įde		
🔌 - 🍌 - 🤧 🕘	ttp://www.reazyread.com/sacks.html 🕺			🖌 🛶 🗕 🔟
	jT6(9PlqkrB Y		•	
	zauBH 1&_à-6	_7IL:/al	MoP, J ^{2*}	
S.C. Stander	dHbnzioI djazuUAb aezuoiAIUB za JZxhK ezzlIAZS JZjziazIUb ZSb&éd		e e	
	i UIZ 7 f5vv rpp^Tgr fm%y12 ?ue >			
	fziuzf nz'roé^sr, g\$ze££fv zeifz'é'mù			
	NR9E45N h bccergbnlwdvkndthb e			
The short of the second second)')&ù^l²mfnezj,elnkôsfhnp^,dfykê zr			1
and the second second	dthà^sdùejyùeyt^zspzkthùzrhzjymzr			- 0
	tips dty dfpet etpsrhlm,eyt^*rgmsfgr	Eichier Edition Affich	age Allerà <u>M</u> arque-pages <u>O</u> utils Fe <u>n</u> être Aide	
			Attp://www.google.com/	💌 🚢 🕶 🛽
0 0	ip^àfbknaep*tM.EAtêtb=àoyukp"()ç4	▶ c2c2c		
,	, étùer^pojzéhùn é'p^éhtn ze(tp'^ztknz			
	Sdouxbvnscwtae, qsdfv:;gh,;ty)à'-àinqo			
çzrO?D0onreg aepmsni_	_ik&yqh "àrtnsùù^\$vb;,:;!!< eè-'''è(-ns			
(N) (\$255.2007) (\$258.2007)	2045			
ibeç8Z zio			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 -	Russ
🐝 🕮 🎸 🖾 📴 Chargé			'ç(tl,rgnùmi\$\$douxbvnscwtae	
		aergin	^àfbknaep*tM.EAtêtb=àoyukp"()ç4	
		l	aronnaep anne were-aroyakp ()ç	···· ·································
		🐝 🕮 🎸 🔝 🗷		

Computer is an **Automated Calculator**

- A **computer** is a **programmable machine** designed to execute, in a sequential and automated manner, the computation operations in a program
 - Programming operations are also called: statements or instructions

```
Variables x, a, b of type integer
Variable i of type integer
For i strating at 0 until 5 do:
x = a^{i} + b
Display x
```


Computer Data Processing

Example 1: Audio signal processing

1. Input acquisition *as electronic signal*

Excited he have the start of the second and the second second and the second s Relaxed mm Drowsy MM mmunmm Asleep MMMm Deep sleep

2. Feature extraction

Computer Data Processing

Example 2: Test processing

Binary format

- ASCII: American standard code for information interchange
 - Standard binary coding to represent characters of the Latin alphabet
 - Text is handled as a sequence of numbers

Character	Decimal	Binary
'A'	65	1000001
'B'	66	1000010
'Z'	90	1011010
'a'	97	1100001
ʻZ'	122	1111010

Toward Intelligent Data Processing

Processing the meaning of data

• Processing sentiments behind data

Hello

A conventional expression of greeting

Who gave the data (*Merriam-Webster Dictionary*)? When was it given (*published in 2002*), etc.

A conventional expression of greeting is "Hello", Following the Merriam-Webster dictionary in its version published in 2002

Toward Intelligent Data Processing

• Involving different fields of study in AI

- Knowledge Representation
- Search Agents
- Machine Learning
- Evolutionary Computation

Attempting to mimic the **biological brain!**

1. Knowledge Representation

- Many of the problems machines are expected to solve will require extensive knowledge about the world
- <u>Main Premise</u>: Assigning information well defined meaning, to be automatically understood and processed by machines

Basic constructs:

- Controlled vocabulary (e.g., machine-readable dictionary)
 - A list of ordered words with explicit semantic meanings
- Thesaurus (e.g., lexicon)
 - A dictionary enriched with semantic relations
 - Is-A, Related-To, Attribute-Of, See-Also, etc.
- Ontology (e.g., knowledge base)
 - Thesaurus with an explicit formalization of relations
 - Using dedicated grammar rules

1. Knowledge Representation

- Knowledge base (e.g., ontology)
 - Modeled as a **Semantic Network**
 - Concepts connected via (hierarchical) relations

- Knowledge processing: evaluating relatedness between concepts
 - In the semantic network search space

Smile [joy:1.00000, sadness:0.02439, love:1.00000, anger:0.02439, disgust:0.04545, astonishment:0.02439] Life [joy:0.01389, sadness:0.12500, love:0.12500, anger:0.12500, disgust:0.01042, astonishment:0.00033] Beautiful [joy:1.00000, sadness:0.02439, love:1.00000, anger:0.02439, disgust:0.04545, astonishment:0.02439]

Challenges

Features

- How to determine the **meaning of an image**?
 - How to determine the **sentiment** reflected by an image?

Happiness?

Challenges

• Multimedia

- How to determine the **meaning of an image**?
 - How to determine the **sentiment** reflected by an image?

Happiness still?

⇒ Darker colors

- 20 -

3. Machine Learning

- Machine learning is the science of getting computers to act without being explicitly programmed
- In the past decade, machine learning has given us:
 - Self-driving cars, practical speech recognition, effective web search, among other applications, as well as a vastly improved understanding of the human genome...

Key to make progress towards human-level AI

- Machine learning techniques fall within two main categories:
 - Unsupervised learning
 - Supervised learning

3. Machine Learning

- Main premise: Identifying an output measure based on input data
 - By mapping inputs to desired output
 - Using sample input/output data provided by experts: training data
- Training data provided in the form of examples $(X_1, y_1), \dots, (X_m, y_m)$
 - where **X** is a vector of $\mathbf{x}_1, \ldots, \mathbf{x}_k$ input values
 - And y is the output generate by unknown/desired activation function *f*

Discover a function h that approximates the desired activation function f

- Approach known as **classification**

3. Machine Learning

Supervised learning: ٠

- Different classification algorithms exist in the literature ٠
 - E.g., Instance-based, Support Vector Machines, and Artificial **Neural Networks**

Inspired by biological brain: ideal learning/recognition system

Input object

Object segmentation

Feature Extraction

Man

Woman

Running

Lady Jumping

Man Jumping

Jumping

Knowledge representation

- 26 -

Autonomous Exploration

Is it enough to learn?

- Problem generator: Suggests actions that can lead to

new experiences and discoveries for the agent

- Without a problem generator, the agent repeats infinitely what it knows to do
 - However, discovering new sequences of actions is central in order to achieve true intelligence
 - <u>Example</u>: A child continuously learns new experiences and evolves its behavior

4. Genetic Algorithms

Evolutionary Computation

- Main premise: The AI system should be able to create and pursue its own goals
 - To persist without (human) assistance, for a long time
 - To expand its knowledge beyond predefined constraints

To take the initiative: to **evolve**!

Evolutionary computation

- Inspired by the **Darwinian Theory of Evolution**
 - Genetic algorithms
 - Mimicking genetic processes nature uses

4. Genetic Algorithms

Evolutionary Computation

Same process mimicked in GA:

- An organism represents a solution to a problem
- A gene represents a sequence of symbols
- Simulating crossover and mutation functions
- **Fitness** is evaluated using a performance function
 - To be maximized/minimized
- Multiple generations are created
 - Until reaching the fittest

4. Genetic Algorithms

Evolutionary Computation

Background in genetics:

Reproduction (crossover)

Natural selection (survival of fittest)

Diversification (mutation)

Social Intelligence

Applications:

- Enhancing social media apps
 - With human like suggestions
- Customers reviews on products
- Information and **tutoring tools**
 - Digital instructors
- Population mood analysis
 - Elections and voting tendencies

Social Intelligence

Applications:

Social monitoring

- Car monitoring the emotions of its occupants
 - Health care and the case of aging populations
- Personal emotion monitoring

Personal conditioning Engaging autism Customer service

• Human-Computer interaction

- Human like robotics
 - Health care and the case of aging populations

Next Frontier?

Next Frontier?

Three scenarios:

- Social monitoring and conditioning of human astronauts
 - Burdon of sustaining human life in space
- Transporting human embryos and hatching them on arrival
 - Robot nannies
- Transporting sentient robots
 - Created in the image of humans...

Social Intelligence

joe.tekli@lau.edu.lb